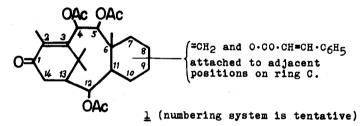
Tetrahedron Letters No. 30, pp. 2161-2165, 1963. Pergamon Press Ltd. Printed in Great Britain.


SOME NMOR STUDIES ON TAXININE AND DERIVATIVES

K. Nakanishi, M. Kurono

Department of Chemistry, Tohoku University, Sendai, Japan and N. S. Bhacca

Varian Associates, Palo Alto, California, U.S.A. (Received 30 September 1963)

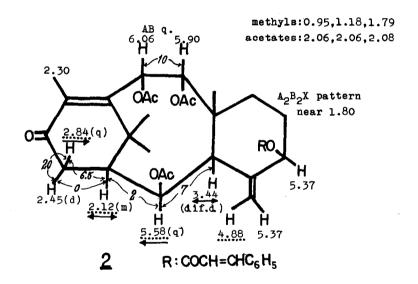
The NMDR (nuclear magnetic double resonance) data* on taxinine and derivatives given in the following permits one to extend structure $\underline{1}^1$ to the full structure $\underline{2}$. Only the results on three key compounds will be discussed here.

The following notations are used in Figs. 1-3.

Abbreviations: dif., diffuse; s., singlet; d., doublet; t., triplet; q., quartet; m., multiplet.

Numbers on protons: ppm value, TMS internal reference.

Numbers between protons; J constant, cps.

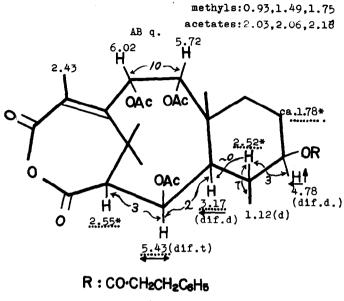

Arrow: direction of arrow indicates which proton was spin-

^{*} NMR and NMDR spectra were obtained on a Varian HR-100 model; decoupling experiments were carried out as described in Varian Technical Information Bulletin, Vol.III, No.3 ins. 1471. All spectra were obtained at 100 Mc.

decoupled; e.g., in Fig.1, the left-pointed arrow by the 5.58 ppm proton shows that C₁₃-H had been decoupled (thus reducing the 5.58 ppm quartet to a doublet). An arrow pointing both ways means that protons on both sides had been decoupled.

-: shows the proton that was irradiated with the strong H₂ frequency; thus dotted lines and direction of arrows are complementary.
 - *: indicates chemical shifts clarified by NMDR. For example, in oxotaxinine(Fig.3) the 1.87 ppm C₆-Me singlet is superposed on methylene signals. Since the broad singlet at 5.27 ppm (C₉-H) became sharp in NMDR traces measured at 340 cps, the C₈-methylene is at ca. 1.85 ppm (527 340 = 187).

FIG.1. Taxinine (in CDCl3)



- 1) AB quartet (J=10 13 cps) due to C_4 and C_5 protons is a common feature seen in all taxinine derivatives.
- 2) C_{11} -H signal: Preliminary NMDR measurements had shown that C_{11} -H became a singlet when C_{12} -H was decoupled, but this alone is not sufficient to eliminate moieties such as $\frac{7}{2}$ since C_{11} -H could be equatorial and bisectional in relation to the

adjacent C_{10} methylene. Alterations in bond angles in a strained system might well result in very weak coupling in the system $CH-CH_2$. However, 2 can be discarded in view of the observation that $C_{11}-H$ is weakly coupled to a signal at the low field of 4.88 ppm. Accordingly, two possibilities 4 and 5 come into consideration.

The A₂B₂X type pattern near 1.80 ppm was in favor of 4 but results were not conclusive since it was overlapped by a methyl singlet.

FIG.2. Acid Anhydride from Tetrahydrotaxinine (in CDCl₃)

6 ca.2.45 2.94

Part structure $\underline{4}$ should be adopted since in the acid anhydride $\underline{6}$, the diffuse doublet at 4.78 ppm, which is the proton alpha to the dihydrocinnamate group, is spin-coupled both to signals at ca. 2.52 (methine H) and 1.78 ppm (methylene H). Decoupling of C_{10} -H (230 cps) changes the C_{9} -H signal to a diffuse singlet, whereas decoupling of C_{8} -methylene (300 cps) changes the signal to a sharper doublet. Apparently, coupling between the C_{8} -methylene and C_{9} -H occurs to a slight extent only. C_{12} -H is a diffuse triplet resulting from overlap of two pairs of doublets.

FIG. 3. Oxotaxinine (in CDCl₃)

The diffuse singlet at 5.27 ppm becomes sharper upon irradiation of the signal near 1.85 ppm (A_2B_2X type pattern) The weak coupling between the C_8 and C_9 protons is a common observance in all taxinine derivatives having the skeletal structure intact. Only in seco-taxinol derivatives 1 does 1t appear as a quartet.

REFERENCES

1. M. Kurono, Y. Nakadaira, S. Onuma, K. Sasaki and K. Nakanishi, 2153 (1963).